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I.  INTRODUCTION 

jftft 
'/     rp = Appropriate 

To properly describe chemical reactions 
in non-permeable porous media, the "pore tree" 
was introduced by Simons and Finson (1979) 
and Simons (1982). This pore structure was 
developed via analogy to the kinetic theory of 
gases: the pore length is analogous to the mean 
free path and under the assumption that the 
pore aspect ratio (pore length to radius) is a 
constant, a pore size distribution was obtained 
that has been confirmed for coal, coal char, 
sorbents, catalysts and even for kidney stones 
from both men (low porosity oxalate) and 
women (high porosity phosphate). The pore 
tree was statistically derived from the pore size 
distribution and allows the orderly migration of 
a reactant gas from the large pores to the small 
pores (see Fig. 1).   A detailed description of 
the pore tree and the coupled transport and 
chemistry is given by Simons (1982, 1983a). 
The spatially dependent transport/reaction equations are solved for a single pore tree and then 
the total contribution of all trees (of all sizes) in the system is obtained by summing the 
contribution of each tree that reaches the exterior of the system. This is distinct from the 
"bulk" transport equations that integrate over all pores at a fixed point in space before they . 
integrate spatially. The "bulk" transport approach inherently assumes instantaneous mixing 
between large and small pores at a single point in space (Random Pore Models) while the 
pore tree relaxes this assumption with a structure that is developed statistically and is 
relatively easy to work with mathematically. 

x\\\\\\\\\\\\\\vf.vwl 

Mean Radius at x 

i,\\*\\\\\\\\\\\\\\\v> Particle Surface 

Figure 1. The Pore Tree 

In all previous applications (sorbents, catalysts and coal combustion) the pore tree 
represents an isolated sub-structure, allowing diffusion into and out of the porous media 
without permitting convection through the media. Under the current ARO program, Simons 
Research Associates is adapting its pore tree model to describe the permeable pore structure 
and convective transport characteristic of the subsurface flow of water in soil, the dispersion 
of contaminants and the in-situ remediation of contaminated sites. The random nature of the 
pore structure, which formed the basis of the statistical derivation of the pore tree, is applied 
to the underground structure of porous soil, sand and rocks. The statistical description of the 
pore tree is extended to describe the concept of permeability, thus allowing convective flow 
as a transport mechanism in addition to the diffusive transport already considered. Physically, 
this amounts to statistically determining the "branches" that are common to several trees to 
allow percolation through the large scale (mobile) structure in addition to diffusion through 
the smaller scale (immobile) structure. While permeability is dominated by the largest pores, 
it is important to determine the level of convection that is occurring at the intermediate scales 
in order to accurately describe transport. The resulting pore structure will provide an analytic 
description of an underground network upon which transport and coupled chemical reactions 
may be accurately superimposed. 



I 
n.   ISOLATED PORE TREE: THE STRUCTURE 

Following the pore structure theory of Simons and Finson (1979) and Simons (1982), 
consider a spherical porous particle of radius a, containing pores of length 1„ and radius rp. 
The pore dimensions range from a microscale of the order of Ängstroms to a macroscale 
which is a significant fraction of the particle radius. The radius of the largest pore is denoted 
by T^ and is given by 

r max =2a6ipßK0 0) 

where 6 is the total porosity of the particle and K0 is a constant of integration, 
approximately equal to five, which relates the pore length to its radius 

(2) 

The radius of the smallest pore is denoted by r^ and is given by 

^26/ßp/, (3) 

where p, is the density of the solid matrix, s„ is the specific internal surface area (several 
hundred m2/g), and 

t=MrwJraJ 
(4) 

The particle contains a continuous distribution of pore sizes from r^ to r,^  . The 
number of pores within an arbitrary plane of cross-sectional area A and with radius between 
rp and rp +drp is denoted by g{r^Adrp. The pore distribution function g(/pis given by 

Ärp=Q/2npr; (5) 

where g(r) indicates an average over all inclination angles between the axis of the pore and 
the normal to the plane. Due to the random orientation of the pores, the intersection of a 
circular cylinder with a plane is an ellipse of average area 2rcrp

2. Hence, tire porosity is the 
27trp

2 moment of g(rj and the internal surface area is the 4rcrp moment of g(rp. The 
expression for g(r ) was derived (Simons and Finson, 1979) from statistical arguments and has 
been validated through extensive comparison of the predicted volume and surface area 
distributions with mercury intrusion data (Stacy and Walker, 1972). This has been 
accomplished for coal, char derived from that coal (Kothandaraman et.al., 1984), sorbents, 
catalysts and even kidney stones from both men (oxalate) and women (phosphate). 



A characteristic feature of the l/rp
3 distribution depicts that the pore volume between 

r,^ and rp increases linearly with the natural log of rp. It is the functional form of this 
relationship, 

'/ 
Pore Volume <* \rlg(rJ)drp<x\nrp (°) 

that depicts the inverse cubic dependence of gOp on rp. A linear display of mercury intrusion 
volume vs. ln(rp) always infers a l/rp

3 distribution. 

The number of pores within the bulk volume V whose pore radius is between rp and 
rp+drp may be defined by Vftr^dr . The pore volume is expressed as the nrv\ moment of 

/Dp and the internal surface area is the 27crplp moment of /(rp. The pore size distribution 
functions ( firj and g(rJ ) are clearly not independent. The definitions of porosity and 

internal surface area infer that fir^ is related to g(rp by 

gir^Ä^lß (7) 

Equation (7) simply states that the probable number of pores intersecting an arbitrary plane 
increases with the length of the pore and with the density of pores. 

The length of a pore is determined by an arbitrary intersection with another pore and 
is expressed (Simons and Finson, 1979) as a collision integral over the pore distribution 
functions. The analysis suggests that 1„ , £(rp and /(rp are proportional to rp , l/rp

3 and l/rp
4 

respectively. The constants of proportionality are obtained from integral constraints, i.e., the 
total porosity and internal surface area contained in the pore structure. The expression for 
/(rp is given by 

«4/3 

where the constants were defined above. 

The pore volume distribution corresponding to these distribution functions is similar to 
that utilized in the random pore model (Gavalas, 1980 & 1981). However, the pore tree 
model and the random pore model differ dramatically in their choice of the pore aspect ratio 
(length to diameter) and its implications with respect to pore branching. The random pore 
model allows a single pore to connect two larger pores. This picture lends itself to the 
idealization of instantaneous mixing between the pores and requires that the pore aspect ratio 
be of the order of one hundred. The pore tree theory uses data for r^ to imply (via KJ that 



all pores possess an aspect ratio of the order of ten. Hence, small pores may connect to larger 
pores only on one end and all pores must branch from successively larger pores like a tree or 
river system. 

Each pore that reaches the exterior surface of the particle is depicted as the trunk of a 
tree. The size distribution of tree trunks on the exterior surface of the particle is denoted by 

g(r)4t%a2drt  where g(rt) is functionally identical to g{r^. Each trunk of radius rt is 
associated with a specific tree-like structure. Let Nt be defined as the branch distribution 
function where Ntdrp is the number of pores of radius rp (within size range drp) in a tree 
whose trunk radius is rt. The total number of pores of radius rp in a sphere of radius a 
may be expressed as Aßnaißrp)drp or, as the sum of all pores of radius rp contained within 
every tree in the porous sample, plus all pores of radius rp that are themselves the trunk of a 
tree. Hence, 

i*a>p= f Ng(rt)4na2drt + 4™2g(rp (9) 

where g(rt) is the number of tree trunks per unit external area of the porous sample and only 
those trees whose trunk radius is greater than rp may contain a pore of radius rp. Using the 
previously derived expressions for r^,  g(rpand /(rp, Eq.(9) is identically satisfied by 

3,4 (10) 
Nt=r;ir, 

The branch distribution function completely characterizes the pore tree. The internal 
surface area and pore volume associated with each pore tree are denoted by St(r,) and Vt(r,), 
respectively, and are expressed as the sum of the contributions from the trunk and that from 
the branches. 

m=2*rM f 2*VMP (ii) 

Vt(rt)=nrflt+j %r2
pl^rp <12) 

rmjn 

Using Eq.(10) for Nt,  St(r,) and Vt(r,) become 



S((r,)=2jA(l-6) (13) 
rmin 

/ 
Vt(r)=izrflt 1+ln -± 

I r \\ 

\ 
r . \ mm/ 

(14) 

where the (1-0) term in St has been included to account for pore combination (Simons, 
1979a). 

The surface area associated with the pore tree may be several orders of magnitude 
greater than the surface area of the trunk. However, the volume of the pore tree may, at 
most, be one order of magnitude greater than that of the trunk. It should also be noted that 
the above expressions for St and Vt reduce to those appropriate to a single cylindrical pore in 
the limit of rt -M^ (the leaf of the tree). Furthermore, the integrals of St(r.) and Vt(r,) over 
all g(r) recover the total internal surface area and pore volume of the porous sample. 

Each trunk of radius rt is associated with a specific tree-like structure with continuous 
branching to ever decreasing pore radii. The radius and number of pores is a unique function 
of the distance x into the tree. The coordinate x is skewed in that it follows a tortuous path 
through the branches of the tree. Let n(x) represent the number of pores of radius rp at 
location x in a tree of trunk radius rt. An analysis (Simons, 1982) of this pore tree has 
demonstrated that 

and the coordinate x is related to r by 

n(x)=r?/rfa) <15> 

drjdx=-rjlt (16> 

The continuous branching model has been used to successfully describe char oxidation 
(Lewis and Simons, 1979; Simons, 1982 & 1983a), coal pyrolysis (Simons, 1983b & 1984) 
and the catalytic cracking of benzene by porous iron oxides (Simons et al., 1986). It was also 
used to successfully describe sulfur sorption (S02 and H2S) by porous calcine (CaO) in the 
limit of zero utilization (Simons and Rawlins, 1980; Simons et al., 1984) and was later 
extended to include CaS04 and CaS deposits (Simons and Garman, 1986; Simons et al., 1987; 
Simons, 1988; Simons et al., 1988). The subsequent determination of the controlling physical 
parameters led to a new concept for the optimization of the sulfur sorption process (Simons, 
1991; Simons et al., 1992) through spray drying of water soluble organic calcium solutions to 
control the sorbent pore structure. 



III. INTERCONNECTIVITY 

The first step in determining the size distribution of the interconnected pores and the 

distribution of the permeability is to determine the distribution function Gt(rt,r^drp which 
represents the number of pores of radius rp (within size range drp) per unit cross section of an 
arbitrary plane and also contained within a tree whose trunk radius is rt. Consider an infinite 
homogeneous isotropic porous .media and isolate a spherical volume of that media denoted by 
the radius a. Such a volume is illustrated in Fig. 2. The total number of pores of radius rp 

(within size range drp) intersecting plane AA of area Tta2 has previously been defined by 

g(r^Tza2dr  . The pores in plane AA in this size range may also be determined by 

integrating Gt(rt,rjna2dr  over all trees whose trunk intersects the exterior surface of the 
porous sample. Hence it follows that 

g(r^a2drp= f[Gt(rt,rJna2drJg(r)4Ka2drt 
(17) 

where only those trees whose trunk radius is greater than rp may contain a pore of radius rp. 

A solution to Eq. (17) for Gt(rt,r\ will not necessarily be unique. Physical arguments 

will help determine G,(r,,0 and help ensure that it is the particular solution we seek. Since 
N, represents the number of pores of size rp in the tree and the probability of a pore 

intersecting a plane is proportional to its length, it follows that G^r^r^ should be 

Figure 2.  Spherical Volume of a Porous Media 



I 
proportional to the product of Nt and lp/lt , i.e., proportional to rt

2/rp
3.   Eq. (17) is identically 

satisfied by a function which differs from rt
2/rp

3 by ln(rp). 

Ö^^'—TT-  (18) 
47ca2r/,ln(rmai/rp) 

Note that ln^/r,^) introduces an integrable singularity at rp=rmflX such that Gt(rt,rp)drp is 
finite at rp=rmax . Hence, there is one and only one largest pore for each reference sphere. 

Further confirmation of the form for Gt(rt,rp) may be made through the definitions of 
porosity and internal surface area. If the porosity and internal surface area in plane AA due to 
a single tree of radius rt are defined by 

and 

2 

_L« (r   r \Atrr dr    «    -  (20) 

respectively, then the total porosity and internal surface area must be represented by their 
respective integrals of 6t and ^ over all trees. Hence 9 

0 = / etg(rt)4na2drt 
(21) 

and Sp 

sp = f stg(r)4Tia2drt 
(22) 

follow respectively. 

It is stated without further proof that Eqs. (19) to (22) are compatible in both their 

exact and their approximate forms. The distribution function Gt(rt,rp) as given by Eq. (18) 



is exact and will be used to determine the interconnectivity of the pore structure. 

The probability of trees sharing common branches, i.e., the interconnectivity of the 

pore structure is described in Fig. 3. We seek the distribution function I(r^drp which 
represents the number of pores (within size range drp about rp) per unit area of plane AA that 
are connected to both sides of the pore structure through pores at least as large as rp.  A$ is 
defined as the area within plane AA that is open to one side of the porous media through all 
trees of size rt' (through all pores of size rp' that are at least as large as rp). Subsequently, 

AQGt(rt,r^dr  represents the number of pores of size rp (within size range drp) per unit area 
of plane AA that are contained in a tree of size range drt about rt and are also connected to 
the opposite side of the porous media through all trees denoted by rt'. It follows that the 
distribution function for interconnected pores in plane AA may be obtained by integrating 

AQGt(rt,rJdr  over all trees (r,) that are large enough to contain a pore of size rp . Hence, 

7{rjKa2drp = / \A9Gt{rt,r^dr^ g(r) 2%a2drt 

From the above definition of AQ , A,, may be expressed as 

(23) 

A9 = f [f2nr2 %a2Gt(rt,rj) drj g(rt)2na2drt 
(24) 

t    P 

Figure 3.  Interconnectivity of a Porous Media 



where the primes on the variables of integration have been omitted. Evaluating Eq. (24) 
yields 

Ac 
ttq2eh(rmB/'» (25) 

2ß 

from which Eq. (23) yields the common branch distribution function. 

It has been deduced that the total number of common branches of size rp in an 
arbitrary plane scales approximately with the total number of pores of that size in that plane. 
Hence, there is a probability of interconnectivity at pore size rp that is logarithmic in pore 
size. Defining this probability as P^r,,) via Eq. (26), 

eMUr; (27) 
/(V 4ß 

it is apparent that approximately one percent of all pores of all sizes are interconnected 
through larger pores. Hence, convection will be responsible for transport in approximately 
one percent of the small pores. While permeability is dominated by the largest pores, it is 
important to determine the level of convection that is occurring in smaller pores in order to 
accurately describe the fine scale transport necessary to assess chemical reactions. The broad 
size range associated with the interconnectivity suggests that a very wide range of pore sizes 
separates the "mobile" and "immobile" regions of the pore structure and that a complicated 
mixture of convective and diffusive transport persists in this pore size range. Determining 
permeability as a function of pore size is the first step in describing the transport in this pore 
size range. 

IV.  CONVECTION IN THE PORE TREE 

Convection across plane AA in Fig. 4 will possess contributions from three sources 
illustrated in Figs. 4a, 4b and 4c. Fig. 4a illustrates the case where the convection in plane 
AA is due solely to the pores that are interconnected in that plane. Fig. 4b illustrates the case 
where the convection in plane AA is due to the smaller pores in the pore tree that are 
interconnected outside of plane AA. This connectivity will translate into a slower velocity in 
the pore crossing plane AA but could be significant because 99% of the pores in plane AA 
are not interconnected in that plane. Fig. 4c illustrates the case where the convection in plane 
AA is due to the pores in the largest trees that provide a direct link across the porous sample. 

10 



a) Pores Interconnected in Plane A A 

b)  Pores Interconnected Out of Plane AA 

c) Pore Tree Spans the Porous Sample 

Fig. 4 Convection in the Pore Tree 

11 



The fundamental relationship governing convection in a porous media is Darcy's Law 

which relates the volume flow rate Q to the pore radius rp and the pressure gradient — 

S\i \   dx) 
(28) 

where |i is the viscosity of the fluid. Considering an isolated pore tree with n pores at 
location x within the tree and drp/dx as given by Eqs. (15) and (16) respectively, the volume 
flow rate for the entire tree (n branches) is given by 

■ tree 

2   3 
*rtrp 

8M, 
(dp 

v   PJ 

(29) 

For a constant volume flow rate within the tree, integration of Eq. (28) yields 

P(rt)-p(r) = *<k.K 
nr. 2 

K'P 
2 

(30) 

which indicates that extremely large pressures will be required in the tree trunk to maintain 
the constant volume flow rate in the smaller pores. This suggests that, whenever possible, the 
flow will "short circuit" through the largest interconnected pores, the pressure gradient will 
be depicted by the largest pores, and there will be a small but finite flow in the smaller pores. 

For the case of rt » rp and p(r,) » p(rp) , Eq. (30) predicts that the volume flow rate of 
the tree is limited by the smallest value of rp to the second power 

Qtree = 
* r?P(rt) r] 

4M, 
(31) 

while that of a single pore is limited by the value of rp to the fourth power. 

A       Qtree _*PWrp (32) 

Comparing Eq. (32) to Eq. (28) suggests that the pressure gradient is depicted solely by the 
largest pores. 

12 



I 

dP = ~2p(rt) (33) 

dx I, 't 

Hence, flow in the pore tree is consistent with that for a bundle of isolated pores and the 
volume flow rate within a single pore tree may be used to determine the dominant transport 
modes identified in Fig. 4. 

Consider any pore of radius rs in plane AA of Fig. 4b to be the trunk of a tree. Each 
pore of size rp within the tree possesses the probability Pt(rp) of being interconnected and 

each interconnected pore in the tree will carry volume flow rate Qp(rp,rs). Since there are 
N9drp (Eq. 10: N8=r8

3/rp
4) pores in size range drp within the tree, the total volume flow rate 

Q„(r ) through trunk r8 in plane A A becomes 

4.W* j 4p(rßtra) Pfa) Nadrp 
(34) 

or, to first order, 

Q (r ) = **PW>('-IO +H.oj (35) 

Within this approximation, it is seen that Q„(rs) is identical to the volume flowing 
through the pores that are interconnected within plane AA. i.e., 

QJrJ^Q/rJP^) (36) 

which demonstrates that all volume flow through plane AA in pore size rs is dominated by the 
interconnectivity of size r8 in plane AA and not by the interconnectivity of smaller pores in 
subsequent branches of the pore tree. Simply stated: case 4a dominates case 4b. 

Case 4c has not yet been evaluated. 

13 



V.  SUMMARY 

This report is the third technical report on the project entitled "Development of Pore 
Structure Models for Water and Contaminant Transport in Partially Frozen Soils," submitted 
to ARO for the period 1 November 1994 to 18 November 1994. The pore tree model is being 
extended to describe the permeable pore structure which characterizes the subsurface flow of 
water in soil, the dispersion of contaminants and the in-situ remediation of contaminated sites. 
Permeability requires a statistical determination the "branches" that are common to several 
trees to allow percolation through the large scale (mobile) structure in addition to diffusion 
through the smaller scale (immobile) structure. While permeability is dominated by the largest 
pores, it is important to determine the level of convection that is occurring at the intermediate 
scales in order to accurately describe transport. Approximately one percent of all pores are 
interconnected through larger pores. Hence, convection will be responsible for transport in 
some of the small pores without influencing the over all permeability. This suggests a very 
wide range of pore sizes separating the mobile and immobile regions and a complicated 
mixture of convective and diffusive transport in this pore size range. Subsequent analysis will 
utilize the interConnectivity of the pores to determine the distribution of the permeability with 
pore size. 
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